Using On-line Simulation in UAV Path Planning
نویسنده
چکیده
In this thesis, we investigate the problem of Unmanned Aerial Vehicle (UAV) path planning in search or surveillance mission, when some a priori information about the targets and the environment is available. A search operation that utilizes the available a priori information about the initial location of the targets, terrain data, and information from reasonable assumptions about the targets movement can in average perform better than a uniform search that does not incorporate this information. This thesis provides a simulation-based framework to address this type of problem. Search operations are generally dynamic and should be modified during the mission due to new reports from other sources, new sensor observations, and/or changes in the environment, therefore a Symbiotic Simulation method that employs the latest data is suggested. All available information is continuously fused using Particle Filtering to yield an updated picture of the probability density of the target. This estimation is used periodically to run a set of what-if simulations to determine which UAV path is most promising. From a set of different UAV paths the one that decreases the uncertainty about the location of the target is preferable. Hence, the expectation of information entropy is used as a measure for comparing different courses of action of the UAV. The suggested framework is applied to a test case scenario involving a single UAV searching for a single target moving on a road network. The performance of the Symbiotic Simulation search method is compared with an off-line simulation and an exhaustive search method using a simulation tool developed for this purpose. The off-line simulation differs from the Symbiotic Simulation search method in that in the former case the what-if simulations are conducted before the start of the mission. In the exhaustive search method the UAV searches the entire road network. The Symbiotic Simulation shows a higher performance and detects the target in the considerably shorter time than the other two methods. Furthermore, the detection time of the Symbiotic Simulation is compared with the detection time when the UAV has the exact information about the initial location of the target, its velocity and its path. This value provides a lower bound for the optimal solution and gives another indication about the performance of the Symbiotic Simulation. This comparison also suggests that the Symbiotic Simulation in many cases achieves a “near” optimal performance.
منابع مشابه
Real-time Path Planning Strategy for UAV Based on Improved Particle Swarm Optimization
Unmanned Aerial Vehicle (UAV) path planning is divided into off-line static path planning and real-time dynamic path planning. The former one is applied to the ideal situation that the terrain has been clear, and there is no unexpected situation in flight. Actually, however, the flight situation is very complex, we have to adopt real-time path planning based on off-line static path planning. To...
متن کاملUAV trajectory optimization generation based on Pythagorean hodograph curve
The study of autonomous planning of UAVs (Unmanned Aerial Vehicles) flyable on-line path to adapt unstructured environment and improve manoeuvring warfare capability has an important practical significance. A path planning algorithm on-line of UAV based on Pythagorean Hodograph (PH) curve is put forward, which can consider the kinematics and dynamic constraints. The effect of the key parameters...
متن کاملAdaptive Dynamic Path Planning Algorithm for Interception of a Moving Target
Most of the 3D curve path planning is used to build static path planning. For intercepting of a moving target, the path planning has to be set in a dynamic condition. L+Dumo algorithm which is based on curve is used to intercept a moving target. In the real situations, the Unmanned Aerial Vehicle (UAV) has possibility to intercept a moving target from all direction. It is assumed that environme...
متن کاملOnline Path Planning for UAV Using an Improved Differential Evolution Algorithm
This paper presents a 3D online path planning algorithm for unmanned aerial vehicle (UAV) flying in partially known hostile environment. In order to provide a smooth fight route for UAV, the algorithm adopts B-Spline curve to describe UAV’s path whose control points are optimized by an improved differential evolution algorithm. The planner gradually produces a smooth path for UAV from starting ...
متن کاملSensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR
In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007